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Optimization of Bragg scattering from atomic gratings for echo interferometry
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We investigate the characteristics of near resonant Bragg scattering, the underlying process that produces a
signal in a grating-echo atom interferometer. We explore how the density modulation produced in an atomic
sample by momentum state interference and optical channeling can be optimally read out using a coherently
Bragg-scattered traveling-wave electric field. When both the channeling and Bragg scattering processes are opti-
mized, we report a 20-fold increase in scattering efficiency. Our results suggest that a quantitative understanding
of the atomic confinement achievable by channeling is possible through an analysis of reflectivity spectra.
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I. INTRODUCTION

In the 35 years since its initial realization, the Raman
atom interferometer (AI) [1–4], has become an indispensable
tool for precision measurements of inertial effects [5–8] and
fundamental physical constants [9–18]. Due to widespread
adaptation for remote sensing [19–24], the strengths and lim-
itations of the Raman AI have been thoroughly analyzed
[25–27]. Another class of interferometers that has been ex-
plored for precision measurements is the Bragg AI [28–35].
However, assessments of other interferometers that may be
able to realize comparable performance have lagged behind.
One such potentially simpler and underutilized technique is
the grating-echo AI [36–38] which has achieved measure-
ments of h̄/m and gravitational acceleration (g) with a lower
sensitivity of about 50 parts per 109 (ppb) [39,40]. However,
improvements in the performance of grating-echo AIs can
be achieved by channeling atoms [41,42]. In this paper, we
show that further improvements are possible by optimizing
the Bragg scattering process that is central to the detection of
matter-wave interference in echo AIs.

The grating-echo AI [36], which can be regarded as a form
of the Talbot-Lau interferometer [43–46], is a single state
AI which uses Kapitza-Dirac diffraction [47,48] of atomic
momentum states to generate matter-wave interference. The
enclosed area of representative space-time paths of atomic
waves for a grating-echo AI is shown in Fig. 1. The AI
involves excitation of a laser-cooled atomic sample by two
temporally separated optical standing wave (SW) pulses with
a delay time T . The interference of momentum states can be
visualized using the “billiard ball” model [49].
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After the first SW pulse, Kapitza-Dirac diffraction of
momentum states leads to matter-wave interference and the
formation of a density grating with a spatial period of λ/2,
where λ is the wavelength of the SW excitation. This den-
sity modulation is transient due to Doppler dephasing of the
momentum states and it can be probed with a traveling-wave
readout pulse applied immediately after the SW excitation
(at time t = 0). This configuration is called the one-pulse
grating AI. If the atoms remain within the interaction zone
established by the laser excitation, it is possible to apply a
second SW pulse (at t = T ) to cancel the Doppler phases of
the momentum states at an echo time (t = 2T ). This causes
the density modulation to rephase in the vicinity of the echo
time even a long time after it has otherwise washed out. The
rephased density grating can also be probed with a traveling-
wave readout pulse. The dual SW pulse configuration is called
the grating-echo AI, drawing its name from the well-known
photon echo effect [50]. Both the one-pulse grating AI and
the grating-echo AI are represented in Fig. 1.

Precision measurements using the echo AI require the
density modulation to be probed across a range of pulse sep-
arations T . A determination of h̄/m relies on measuring the
recoil modulation present in the backscattered field amplitude.
A measurement of g relies on recording the phase accumu-
lation in the backscattered light due to the falling grating.
The sensitivity in both of these measurements stems from the
ability to resolve the echo signal for large excitation pulse
separations. In order to exploit these long timescales, it is crit-
ically important to maximize the signal-to-noise ratio of the
readout process. In this paper, we study the spectral features
of near-resonant Bragg scattering as a means to augment the
backscattered signal.

We note that optimization strategies have been achieved
in other AI schemes. For instance, in Raman AIs, losses
in overall atom number (imposed by velocity selection and
magnetic state preparation) have been overcome by utilizing
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FIG. 1. Schematic of one-pulse grating AI and grating-echo AI
using the “billiard ball” model, where the excitation (SW, ±k =
2π/λ) and readout (RO, kRO) are incident along the z direction. For
simplicity, only one set of interfering trajectories is shown for a
generic ground state |1, p〉. The backscattered signal is indicated
by S. The lower panels show experimental data (points) for the
one-pulse grating AI (left) and the grating-echo AI (right) for a
sample of 85Rb with a temperature of ≈10 µK. The vertical bars
indicate the reflectivity integration window described in Sec. II. Data
are overlayed with an analytic model of the echo envelope in the
Raman-Nath regime (solid black lines) described in Appendix B.

population measurements at the output ports that involve scat-
tering several thousand photons per atom. Similarly, contrast
interferometers, such as Talbot-Lau AIs using Bose-Einstein
condensates (BECs), have been able to leverage the narrow-
ness of the condensate velocity distribution to record several
periods of the recoil modulation using a single readout pulse,
resulting in improved sensitivity [51,52].

Although a number of grating-echo AI techniques using
cold atoms have been developed to measure recoil [39,53–56],
g [40,57], magnetic field gradients [57,58], and the velocity
distribution of atomic samples [37], these measurements have
not optimized the backscattered signal. In general, these mea-
surements have operated with far off-resonant probe/readout
detunings (�RO > 50 MHz) to reduce the effects of sponta-
neous emission and with short excitation pulses in an effort
to satisfy the Raman-Nath criterion where theory is available
to describe the momentum state interference [37,38,54,59].
As a consequence, the grating reflectivity in these studies
has been restricted to ≈0.1% due to the low contrast of
density modulation produced by SW excitation. Correspond-
ingly, the timescale of past experiments has been restricted
to T ≈ 50 ms.

Despite these limitations, by virtue of operating with a sin-
gle ground state, an excitation scheme that uses only a single
laser without the technical complexities of phase locked lasers
to drive the Raman transitions, losses associated with velocity

selection, or the requirements of BEC sample preparation, the
grating-echo AI offers a relatively simple alternative to the
Raman AI and BEC Talbot-Lau AIs.

A particularly attractive feature of the echo AI is that the
backscattered signal in response to the readout pulse arises
due to coherent Bragg scattering from a phased array of
dipoles. The amplitude of this signal can be increased by
improving the contrast of the density modulation. In addi-
tion, this signal exhibits a nonlinear scaling as a function of
the number of participating atoms and the relative detuning
of the readout pulse. While these features of coherent scatter-
ing have been demonstrated in other optical crystals [60,61],
they have not been fully exploited in the context of the
echo AI.

Recently, there have been renewed efforts to improve the
contrast of the echo AI by channeling atoms into a SW lattice
[41,42,62] and to understand the underlying coherent scatter-
ing processes that give rise to the signal. In the context of
our experiments, channeling refers to the application of long
excitation pulses that violate the Raman-Nath criterion. In a
classical description, this type of excitation results in the relo-
cation of atoms to the nodes of the SW potential. Channeling
in this manner increases the overall contrast of the density
modulation arising from matter-wave interference and leads
to more efficient Bragg scattering. In particular, Ref. [42] has
shown the effectiveness of channeling performed during trap
loading, while our previous work [41] demonstrated a similar
sixfold increase in reflectivity while performing channeling
after the trapping forces have been turned off.

In this paper, we build on the developments of Ref. [41]
and investigate how the Bragg reflectivity of a channeled
grating-echo AI can be maximized. We explore the depen-
dence of Bragg scattering on the detuning of the readout field,
the number of atoms in the cold sample, and the degree of
localization of the atoms that is controlled by the channeling
effects of the excitation pulses. We support this paper with
numerical simulations of optical channeling and Bragg scat-
tering using a transfer matrix formalism [61,63]. We interpret
our measurements on the basis of these simulations, which
predict the expected enhancement in the AI reflectivity over
a broad range of channeling times and readout detunings. We
demonstrate that a 20-fold improvement in reflectivity can be
achieved for the one-pulse grating AI by optimizing the chan-
neling and Bragg scattering processes. We show that a similar
improvement can be replicated in the grating-echo AI. The
enhanced peak reflectivity in echo experiments demonstrated
in this paper renews the possibility of extending the timescale
of echo AI measurements to improve sensitivity.

We have organized the remainder of the paper as follows:
the experimental setup is described in Sec. II, the theoretical
model used to characterize Bragg scattering in the echo AI
is explained in Sec. III, and the results and discussion are
presented in Sec. IV.

II. EXPERIMENTAL SETUP

The experimental setup and trapping scheme are the same
as described in Ref. [41]. A cloud of ≈109 85Rb atoms with
a density of ≈1010 cm−3 and a temperature of ≈10 µK is
released from a vapor cell loaded magneto-optical trap (MOT)
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FIG. 2. Schematic of the frequency shifts for AI and RO pulses. The AI beams are generated from a dual-pass AOM (AI AOM, δνE =
125 MHz) resulting in a detuning of �AI ≈ 390 MHz. The RO is derived from the undiffracted beam of the trapping AOM. The RO is
downshifted by a separate dual-pass AOM (RO AOM 1), shown by the solid beam path, labeled Arm 1. The resulting frequency shift is
2δνs1 where δνs1 ∈ [−60, −95] MHz. For additional tuning range, the output of RO AOM 1 can also be directed into a single pass AOM
(RO AOM 2), that results in an additional frequency shift of δνs2 ∈ [70, 90] MHz. This beam path, labeled Arm 2, is indicated by the dashed
line. The full tuning range using both RO arms is shown as an inset. All detunings are with respect to the F = 3 → F ′ = 4′ transition in 85Rb
(ν0). The directions of the beams relative to the trapping cell and g are also shown. Legend: λ/4, quarter waveplate; λ/2, half waveplate; BS,
50:50 nonpolarizing beamsplitter.

[64] at the center of a ≈1-m Pyrex tube with rectangular
faces. Typically, the MOT has an ellipsoidal shape, with a
horizontal extent of ≈6 mm and a vertical length of ≈12 mm.
The trapping, repumping, AI excitation, and readout beams
are derived from master-oscillator power amplifier (MOPA)
systems seeded by external cavity diode lasers that have nom-
inal linewidths of ≈200 kHz [65,66]. These beams are routed
to the Pyrex cell using optical fibers, as shown in Fig. 2.

The size of the MOT is imaged on a CCD camera and the
number of atoms, N , is inferred from fluorescence [59,67,68].
N is varied by changing the repetition rate of the experiment,
the intensity of the repump light, and the magnetic field gra-
dient of the trapping coils.

The AI excitation is composed of two circularly polarized
pulses (σ+ − σ+) counterpropagating along the vertical di-
rection. To reduce the effect of spontaneous emission during
the excitation, these pulses are tuned ≈390 MHz above ν0,
the F = 3 → F ′ = 4′ transition in 85Rb. This is accomplished
using a 125-MHz acousto-optic modulator (AOM) operated
in dual-pass configuration [69,70] which also reduces optical
leakage into the AI. As in Ref. [41], these channeling excita-
tion pulses are applied after the MOT has been released from
an optical molasses.

In order to study near-resonant Bragg scattering of a probe
beam, we tune the readout pulse over a range of ν0 ± 50 MHz
using separate chains of AOMs (Arm 1 and Arm 2 in Fig. 2).
To facilitate this tuning range, after the MOT is released,
we generate the traveling-wave readout pulse from the same
MOPA system which drives the trapping beams. We show
the relevant beam paths and frequency shifts in Fig. 2. The
AI excitation beams are spatially overlapped with the readout
beam using a 50:50 beamsplitter. All of these pulses have

nominal beam waists of ≈3 mm. In these experiments, the
readout power varies in the range of 1–10 mW, while the
excitation pulses generally have powers of ≈10 mW. This
excitation intensity corresponds to a single beam Rabi fre-
quency of �1 = 	

√
I/2Is ≈ 3	, where 	 is the radiative rate

of the excited state, I is the single beam intensity, and Is =
3.9 mW/cm2 is the saturation intensity. The Rabi frequency
of the standing wave is then defined as �0 = 	

√
I/Is ≈ 4.2 	.

As in Ref. [41], the backscattered signals from the AI
are collected using a photomultiplier tube gated both by an
electronic circuit (rise time ≈200 ns) and by a 250-MHz
AOM (≈20% efficiency and ≈100-ns rise time). Traces are
collected with a digital oscilloscope with a bandwidth of
80 MHz. We measure the power of the readout beam using
a calibrated photodiode and calculate the reflected fraction of
the readout light from the atomic sample. Here we assume that
the scattered beam has the same spatial extent as the readout
beam and compute reflectivity as the ratio of the power in the
incoming and reflected beams. We measure this reflectivity
across a small time window of the scattered field envelope
where the signal is maximized, as shown in Fig. 1, and report
the average of four to eight repetitions. Error bars in the
figures that follow represent the standard deviation of these
repeated measurements.

III. THEORETICAL CONSIDERATIONS

In a simplistic picture, when a density modulation is es-
tablished in an atomic ground state, a traveling-wave readout
pulse can be used to create superpositions between ground
and excited states so that emission from an array of dipole
oscillators emerges as a coherent burst along a phase matched
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direction. Such a description of Bragg scattering can be used
to understand the signal in both the one-pulse grating AI and
the grating-echo AI. However, to include the effects of sample
density and pulse propagation, it is necessary to describe
Bragg scattering in a more rigorous manner.

In an effort to quantitatively model the reflectivity of the
grating-echo AI, we begin with the reflection coefficient for
a lattice formed in a dilute gas. As shown in Appendix A,
we follow Refs. [50,61,63,71] and assume that the reflection
coefficient is given by

R = 18

π4

(
λRO

D

)4 S2
F,F ′

1 + (2�RO/	)2
( fRN )2β2 (1)

where D is the diameter of the backscattered beam, λRO is the
scattering field (readout) wavelength, �RO is the detuning of
the readout beam from the excited state resonance, and SF,F ′ is
the oscillator strength of the resonant hyperfine transition F to
F ′. N is the number of atoms in the sample and fR represents
the fraction of atoms participating in the scattering which is
akin to the occupation number of the lattice [72], while β =
e−2σ 2

z k2
RO is the Debye-Waller factor, characterizing the relative

localization σz of the atoms in the lattice.
While Eq. (1) captures the key features of the backscattered

signal, it is valid only in the limit of far off-resonant readout
light (“conventional” Bragg scattering) or in the near-resonant
case for very dilute vapors, where absorption is minimal and
multiple scattering events are negligible. Under these condi-
tions, the characteristics of the optical lattice in the dilute gas
can be quantified using the Debye-Waller factor [73], which
describes the degree of confinement of atoms. Equation (1)
clearly shows the linkage between higher reflectivity and the
increase in grating contrast parametrized by β2.

On the basis of this treatment, we can also predict increased
reflectivity with (i) samples containing more atoms and (ii)
near-resonance readout excitation. However, increasing the
number of atoms in the sample to leverage the N2 dependence
and decreasing the readout detuning to exploit the Lorentzian
spectral shape begin to violate the assumptions underlying
Eq. (1). Accordingly, a more nuanced approach is necessary
to describe the improvements that can be achieved in our
experiments by changing these parameters to maximize Bragg
scattering in the grating-echo AI.

While the basis of the backscattered signal from the echo
AI is a result of momentum state interference, Ref. [41] has
shown that the variation in atomic density along the lattice di-
rection is enhanced by optical channeling when pulses violate
the Raman-Nath criterion. In this configuration, the transfer
matrix (or ABCD matrix) is particularly well suited to describe
the propagation, reflection, and absorption of light through a
medium of varying density [61,72,74,75]. Accordingly, we
use a simplified transfer matrix formalism to express the
scattering from the atomic sample. We combine this with a
model of atomic channeling similar to Ref. [41] to describe
the experimental data more fully, as described below.

A. Transfer matrices and sequential density model

We consider a sample of volume V with a length L in
the z direction, as shown in Fig. 3(a). To employ the transfer
matrix approach, we partition the full sample into thin slices

FIG. 3. (a) Excitation geometry of the atomic sample. (b) Ap-
proximation of the atomic volume with a flat-top profile made up
of M = L/d scattering units, where d = λ/2 is the lattice period.
(c) Partitioning of scattering unit into Ns sublayers each of length
δz = λ/40, where the atomic population distribution ρ is shown
relative to the unmodulated density ρ0. (d) Differentiates between
the effective interacting fraction fR (hashed area) and the remaining
atomic density (solid area). (c), (d) The effect of channeling in the
SW potential. (e) Calculations of ρ(z)/ρ0 across one optical lattice
wavelength for various channeling times, using Eqs. (8) and (9) for
1000 atoms with fR = 0.5. (f) Lattice visibility [from Eq. (11)] as a
function of channeling time for different values of fR, corresponding
to the one-pulse grating and grating-echo AI.

of approximately uniform density that occupy the xy plane. To
characterize light propagation through each small transverse
slice, we write the reflectivity of a thin layer located at a
position z as

ζ (z) = −ρ(z)
3δz

(kRO cos γ )2
AF,F ′ (2)

where ρ(z) is the density of the thin layer with thickness
δz, kRO is the wave vector of the readout beam, and γ is the
angle between kRO and the z direction.

To incorporate contributions from all nearby excited states
we include the overall transition strength:

AF,F ′ =
∑
F,F ′

SF,F ′

(i + 2�F,F ′/	)
(3)

where �F,F ′ is the detuning of the readout beam from
each resonant transition parametrized by the oscillator
strength SF,F ′ .

We then follow Refs. [61,71,72] and write a transfer matrix
for an individual layer:

Mδz =
(

1 + iζeikROδz cos γ iζe−ikROδz cos γ

−iζeikROδz cos γ 1 − iζe−ikROδz cos γ

)
. (4)
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The transfer matrix for the entire sample then becomes

M =
K∏

j=1

Mδz( jδz) (5)

where K = L/δz is the integer number of thin sequential
layers and the reflection coefficient for the sample can be
expressed as

R =
∣∣∣∣M1,2

M2,2

∣∣∣∣
2

(6)

where M1,2 and M2,2 represent the (1,2) and (2,2) indexed
elements of the transfer matrix. Additionally, the transmissiv-
ity of the sample is given by T = |1/M2,2|2, and the absorbed
fraction of readout light is A = 1 − T − R. This last quantity
is a measure of incoherently scattered photons due to sponta-
neous emission.

The sequential density model [Eqs. (2)–(6)] describes the
evolution of the optical field amplitude and phase as the
light propagates through discrete layers of an arbitrary one-
dimensional atomic density distribution. This model is valid
across both the thin- and thick-grating regimes [61]. The latter
is characterized by multiple reflections between atomic lay-
ers, and can lead to the suppression of spontaneous emission
due to photonic band gaps in the atomic lattice [72]. Our
experiments operate in an intermediate regime, between the
thin- and thick-grating limits, with a significant portion of the
density distribution corresponding to disordered atoms.

Similar to Eq. (1), which is valid in the thin-grating limit,
the sequential density model predicts an enhanced reflectivity
as the readout frequency is tuned toward an atomic transition.
This arises due to periodic structures in the atomic density
that meet the condition for coherent Bragg scattering and
increased atom-field coupling with the excited state. However,
as the readout field approaches resonance, the contribution
from incoherent scattering due to absorption/spontaneous
emission also increases. Consequently, both R and T decrease
near �RO = 0. These competing processes are captured in the
overall transition strength [Eq. (3)] which is embedded in the
sequential density model [Eqs. (2)–(6)]. For our experimental
conditions, this behavior tends to produce a reflectivity spec-
trum with a dip around the F = 3 → 4 resonance of 85Rb. We
discuss the shape of the spectra further in Sec. IV.

For this paper, we determine the length of the sample L
using a CCD image of the cloud and assume a top-hat profile
with an extent equal to the 1/e full width of the image. As
shown in Fig. 3(b), we deconstruct the atomic sample into
M = L/d scattering units along the lattice direction each with
thickness d = λ/2 representing a single period of the lattice.
In order to capture density variation across the lattice period,
like that arising from optical channeling, each scattering unit
is then further partitioned into Ns = 20 sublayers each with
a thickness δz = λ/40, as illustrated in Fig. 3(c). This leads
to a full transfer matrix of K = M × Ns layers. Since in our
experiments L is on the order of ≈1 cm, typically we have
M ≈ 3×104 lattice periods and K ≈ 6×105 sublayers in the
sample. It is in the calculation of these sublayer densities that
the effects of channeling are incorporated.

B. Channeled distributions

We consider the sample to consist of N atoms, each with
an initial position z j , such that they are randomly distributed
along the sample length L in the z direction. Since samples
in our experiment have a temperature on the order of 10 µK,
the spatial extent of their wave functions samples only a
very local portion of the SW potential and allows for their
motion to be treated more classically. Accordingly, given a far
off-resonance SW potential (� � �0, 	), aligned along the
z direction, the center of mass of each atom will follow the
equation of motion [41]:

mz̈ j
′ = − h̄k�2

0

�
sin(2kz′

j ) (7)

where z′
j represents the center of mass position of the jth atom

after the channeling pulse, k = 2π/λ is the wave vector of
the excitation field, m is the mass of the atomic species, �

is the detuning of the traveling-wave components of the SW
from the excited state, and �0 is the Rabi frequency of the
excitation.

We consider initially stationary atoms and represent the
extent of the jth atom along z with a probability per unit
length � j (z − z′

j ) = ψ∗ψ , where ψ is the one-dimensional
atomic wave function. Thus, after a channeling pulse of length
τ , the density of a transverse slice with volume V ′ located
at a position z and defined by a longitudinal length δz is
described by

ρ ′(z, τ ) = 1

V ′

N∑
j=1

∫ z+δz/2

z−δz/2
� j[z − z′

j (τ )]dz, (8)

where ρ ′ is the atomic density of the layer. Here, z′
j (τ ) rep-

resents the center of mass position of the jth atom after
the channeling pulse of duration τ , given by the solution to
Eq. (7).

To lower the computational cost of evaluating the reflection
coefficient, we find that using a delta-function distribution
for each atom (� j (z) = δz,z j ) is sufficient to model the ex-
perimental data. For channeled samples, the spatial width
σz 
 λ/2. Hence, this localized density model is justified
for the one-pulse signal. For the two-pulse grating echo AI,
the wave packets spread to σz � λ. However, summing over
many wave packets with a variety of center positions leads to
a reinforcement of the density modulation at the echo time.

We note that the model can be modified to include a more
detailed representation of momentum state interference by
replacing � j in Eq. (8) with a spatially modulated single
atom probability distribution. An interesting aspect of such an
approach is that it allows the signal envelope in the channeling
regime to be predicted despite the absence of an analytical
description. We discuss this modification in more detail in
Appendix B.

Regardless of the choice of �, we can use the combination
of Eqs. (7) and (8) to calculate the modulated atomic den-
sity of the sample. This is consistent with the “histogram”
approach followed in Ref. [41] where the position of many
atoms was binned after a particular channeling time to gen-
erate the population distribution. Nevertheless, for the work
presented in the main body of this paper, we only show
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simulations using a delta-function distribution for each atom.
Here, the density profiles produced by optical channeling,
as shown in Fig. 3(e), are computed using Eq. (8) for 1000
atomic trajectories taken at random positions across each SW
period d .

To best match experimental data in both the one-pulse grat-
ing AI and the grating echo AI, we define the full ensemble
density as

ρ(z) = ρ0(1 − fR) + fRρ ′(z) (9)

where ρ0 is atomic density assuming no modulation and ρ ′
is the local density modulation calculated using Eq. (7). As
shown in Fig. 3(d), fR takes on a similar role as in Eq. (1),
representing the effective fraction of atoms that are channeled
into the lattice. In the case of the grating echo AI, the un-
modulated fraction (ρ0) includes the incoherent portions of
the atomic wave functions resulting from the spreading of the
atomic wave packets in the time between the channeling and
readout pulses. We can then use Eqs. (8) and (9) for both
AI configurations to partition a channeled ensemble density
into thin layers of width δz each with a uniform density.
Representative distributions of ρ are shown in Fig. 3(e) for
a variety of channeling times.

From such distributions, it is straightforward to determine
the contrast of the gratings given by

C = (max ρ − min ρ) (10)

and the corresponding visibility

V = C/(max ρ + min ρ) (11)

for arbitrary channeling times. Figure 3(f) shows the visibility
predicted by Eq. (11) for a range of channeling times for
typical values of fR in our experiments inferred by match-
ing data and predictions of simulations. Here we note that
C and V exhibit oscillations as a function of the interaction
time expressed in units of the harmonic oscillator period for

the potential, τHO = 2π

√
�/�2

0ωq, where ωq = 2h̄k2/m �
2π×15.5 kHz is the two-photon recoil frequency [76]. Our
experiments typically have τHO ≈ 6 µs. We note that for a
purely harmonic potential, the visibility reaches a maximum
at τ ≈ 0.25 τHO, while here it reaches a maximum value
around τ ≈ 0.3 τHO, in agreement with the description of an
anharmonic potential in Ref. [41].

C. Application to experimental data

In what follows, we use the experimentally measured atom
number N to calculate the atomic population density in K
sublayers across the sample. Using Eqs. (7)–(9) we describe
the spatially varying density resulting from optical channeling
pulses of varying lengths. We then compute the reflectivity
using the transfer matrix formalism [Eqs. (2)–(6)] for a given
readout detuning. In this manner, we are able to characterize
the frequency response of the reflectivity for the one-pulse
grating AI and grating-echo AI, when the readout beam is
tuned near resonance to optimize Bragg scattering.

In our experiments, there are two physical effects which
contribute to the alignment of the readout beam relative to the
lattice wave vector, which are parametrized by two alignment

FIG. 4. Reflection coefficient of the one-pulse grating AI as a
function of readout detuning for clouds containing different numbers
of atoms (shown in legend). Solid lines show simulations using
Eq. (6). The excitation pulse has a duration of τ ≈ 0.3 τHO and
the free parameters are determined to be (a) fR = 0.57 ± 0.03 and
γ = 0.0 ± 0.3 mrad, (b) fR = 0.58 ± 0.02 and γ = 1.5 ± 0.5 mrad,
and (c) fR = 0.54 ± 0.01 and γ = 1.9 ± 0.5 mrad.

angles. We designate � to represent the angle between the
excitation beams relative to 180◦ that alters the length of the
lattice, while we use θRO to correspond to the angle of inci-
dence of the readout with respect to this lattice wave vector.
The alignment of the lattice and readout beams is coarsely
maintained at the level of ≈2 mrad by aligning both the ex-
citation beams and readout beams through the same optical
fiber. Since these angles are small, we model their combined
effect by defining γ = θRO − �.

We compare experimentally measured reflectivity spectra
with predictions of the sequential density model. The model
relies on independent measurements of the atom number N
(made with a photodiode) and the sample length L (made
with a CCD camera). In this manner the number of layers
and the layer density to be used in the calculations can be de-
termined. We perform a least-squares regression to determine
the parameters γ and fR that best match the data. We further
constrain fR to a range between 0 and 1 and γ to lie within
our experimental angular uncertainty (≈2 mrad).

We use values of fR to characterize the visibility of atomic
gratings and use Eqs. (9)–(11) to compare with previous
grating-echo experiments [77,78]. To quantify the confine-
ment of atoms, we adopt the idealized approach used in Eq. (1)
to describe the subset of our experiments that are carried out
with an off-resonant readout beam (�RO ≈ 50 MHz). Under
these conditions, we demonstrate the N2 scaling of the peak
reflectivity and extract the Debye-Waller factor, β. We also
compare the localization of atoms in our experiments with
results from previous grating-echo experiments [42].

IV. RESULTS AND DISCUSSION

Figure 4 shows the reflection coefficient of a one-pulse
grating AI as a function of the readout detuning. We find
that the scattering spectrum is well modeled by Eq. (6) which
includes the effect of channeling. Here, representative calcula-
tions are shown as solid lines. As the detuning of the readout
beam is decreased, the increase in atom-field coupling leads
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to enhanced scattering. Far from resonance, this behavior can
also be understood on the basis of Eq. (1), which predicts
a Lorentzian dependence for the reflectivity. However, near
resonance, the sequential density model predicts a decrease in
coherent scattering due to absorptive and multiple scattering
effects, a feature prominent in the experimental data, leading
to a two-peaked reflectivity spectrum.

For small atom numbers, where absorption is negligible,
the model predicts a generally symmetric spectrum with a
single peak at zero detuning. For samples with more atoms,
the model predicts a two-peaked shape, with a dip near
zero detuning due to resonant absorption consistent with
Refs. [60,61]. The separation of the two maxima increases
in samples with more atoms, as absorption becomes more
prevalent at larger readout detunings.

The reflectivity spectrum has a slight inherent asymmetry
stemming from the presence of excited states below but not
above the F = 3 → F ′ = 4′ transition in 85Rb, which is also
more evident in samples with more atoms. However, as noted
in Ref. [60], small changes in the relative angle between the
readout wave vector and the lattice beams result in a more
prominent asymmetry in the reflection spectrum.

All of these features are represented in the experimental
data. However, we note a slight disagreement between the
data and simulations near the red-detuned peak of the reflec-
tivity spectrum for samples with N > 8×108 atoms. While
this discrepancy is not yet well understood, we find excellent
agreement in the far-detuned limit, as well as for cases of blue
detuned readout beams and for samples with lower numbers
of atoms. In our experiments, for samples containing ≈109

atoms, we note an increase in reflectivity by a factor of ≈3–4
if the readout detuning is reduced from ≈50 to ≈18 MHz.

In calculations of Eq. (6), the interacting fraction fR serves
as a scale factor representing the occupation number of the
lattice and the efficacy of the channeling process. For the
one-pulse grating AI, we find that an average value of fR =
0.56 ± 0.02 results in the best agreement with data. This
value is reflected by the solid line in Fig. 3(f), where we can
see that it corresponds to a visibility of V ≈ 0.76. For our
experimental parameters, this maximum visibility for single
pulse excitation serves as an upper limit for echo experiments
that augment grating contrast using long optical channeling
pulses.

Figure 5 shows the reflection coefficient of a grating-echo
AI as a function of the readout detuning. Here we note the
overall similarity between the echo spectra and their single
pulse counterparts shown in Fig. 4, including the dip in re-
flectivity for small readout detunings in samples with more
atoms. In general, we observe a comparable fourfold increase
by changing the readout detuning from 50 MHz to the peak
value (�RO ≈ 20 MHz).

The agreement between experiment and simulations (solid
lines in Fig. 5) shows that Eq. (6) is also successful in mod-
eling the reflection spectra for the grating-echo experiments.
Again we leave γ and fR as free parameters to best match
the experimental data. The values of γ , as reported in the
caption, show similar milliradian variation as in one-pulse
experiments. These angles explain the slight asymmetry in the
spectra, which varies from one data set to another due to slight
changes in beam alignment.

FIG. 5. Reflection coefficient of the grating-echo AI as a func-
tion of readout detuning for clouds containing different numbers
of atoms (shown in legend). Solid lines show simulations using
Eq. (6). Here, the excitation pulses have durations τ ≈ 0.3 τHO and
experiments were performed with a pulse separation T = 70.12 µs.
The free parameters are determined to be (a) fR = 0.26 ± 0.01 and
γ = 0.0 ± 0.5 mrad, (b) fR = 0.26 ± 0.02 and γ = 0.0 ± 0.8 mrad,
and (c) fR = 0.27 ± 0.04 and γ = 1.5 ± 1.5 mrad.

Although the echo technique faithfully reproduces a den-
sity modulation at the echo time, the application of the second
pulse is a nonselective process resulting in many interfero-
metric paths, only a subset of which contribute to the signal.
This effect, in conjunction with velocity dispersion resulting
in the spreading of the atomic wave packets, leads to an
overall reduction in the contrast of the density modulation
at the echo time in comparison with t = 0. This change is
captured by a reduction in the fR parameter in the sequen-
tial density model. Accordingly, we find the main difference
between Figs. 4 and 5 is the value of fR, which is re-
duced from 0.56 for the one-pulse grating AI to 0.26 for the
grating-echo AI.

We show the value of fR = 0.26 resulting from the
grating-echo AI experiments as the dashed line in Fig. 3(f).
In Fig. 3(f), we can see that it corresponds to a visibility
of V ≈ 0.50. This visibility can be compared with the
maximum theoretical visibility calculated for grating-echo
experiments (≈60%) in the absence of spontaneous emission
and channeling [77,78].

To demonstrate the effect of channeling, we show reflec-
tivity spectra for increasing channeling durations in Figs. 6(a)
and 6(b), for the one-pulse grating AI and the grating-echo
AI respectively. The agreement between experiment and sim-
ulation across a wide range of channeling times, described
by Eqs. (7) and (9), serves to illustrate the effectiveness of
the model for both AI configurations. For both the one-pulse
grating AI and the grating-echo AI, the maximum reflectivity
occurs when the channeling time is τ ≈ 0.3 τHO in agreement
with Ref. [41].

Previous echo experiments [36,39,40,53–59], which did
not employ channeling, resulted in reflected fractions on the
order of ≈0.1% for readout detunings of ≈50 MHz. We
find these values in agreement with our experimental data
when the excitation frequency is tuned far off resonance and
pulse lengths are restricted to satisfy the Raman-Nath regime
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(a) (b)

(c) (d)

FIG. 6. (a), (b) Reflection coefficient (R) as a function of readout detuning resulting for different channeling times in the (a) one-pulse
grating AI and (b) the grating-echo AI. Solid lines indicate fits to Eq. (6). For (a), N = 7×108, while fR = 0.57 ± 0.03 and γ = 1.5 ± 0.5 mrad
best match the results. For (b), N = 6×108, while γ = 0.1 ± 0.2 mrad, and fR = 0.26 ± 0.03. (c), (d) R as a function of the number of atoms
for different channeling times for the one-pulse grating AI (c) and the grating-echo AI (d), respectively. The data in (c) and (d) were collected
with a readout detuning of �RO = 50 MHz. The solid lines show quadratic fits to Eq. (1) with fR = 0.57 for (c) and fR = 0.26 for (d). The
insets in (c) and (d) show the inferred Debye-Waller factor from these fits, with the shaded region representing the experimental uncertainty
associated with the number of atoms. Echo experiments in (b) and (d) were performed with a pulse separation T = 70.12 µs.

[e.g., �RO ≈ 50 MHz for τ = 0.05 τHO as in Fig. 6(b)]. Our
results indicate that we can improve the reflectivity by nearly a
factor of 20 through the combination of optical channeling and
near-resonant Bragg scattering [e.g., �RO ≈ 15 MHz for τ =
0.33 τHO in Fig. 6(b)]. For our best conditions, corresponding
to the largest number of atoms loaded into the trap, we report
a peak reflectivity of 2.5% (Fig. 5) for the grating-echo AI.

To emphasize the interplay between channeling and the
number of atoms in the sample, Figs. 6(c) and 6(d) show the
reflectivity as a function of atom number for several chan-
neling times. These data for the one-pulse grating AI (c) and
the grating-echo AI (d) were collected using an off-resonance
readout (�RO ≈ 50 MHz). For each channeling time, we ob-
serve the unambiguous quadratic dependence on atom number
as predicted by Eq. (1) in the far detuned limit. Using the
value of fR determined from the spectra shown in Figs. 4 and
5, we can extract the Debye-Waller factor for each channeling
time, using Eq. (1). These values are shown in the insets to
Figs. 6(c) and 6(d). The peak value of β ≈ 0.78 coincides
with the maximum reflectivity at τ ≈ 0.3 τHO. This value of β

corresponds to a confinement of 0.05 λ (≈41 nm) for both AI
configurations. As a point of comparison, Ref. [42] was able
to achieve a confinement of 55 nm, by employing channeling
which was heavily damped and occurred during the trap
loading phase.

V. CONCLUSIONS

We have presented a thorough exploration of optimized
near-resonant Bragg scattering in a grating-echo AI. We have
demonstrated that optical channeling pulses, which violate the
Raman-Nath criterion, can be used to increase the density
modulation of the one-pulse grating AI and the grating-
echo AI. We have shown that these high contrast gratings
are maximally reflective to near-resonant readout light. We
have presented a transfer matrix formalism that is successful
at predicting the effects of channeling and Bragg scattering in
the sample for both the one-pulse grating AI and the grating-
echo AI. Using this model, we have characterized the effec-
tiveness of optical channeling pulses to confine atoms in a lat-
tice using the Debye-Waller factor. The model appears flexible
enough to describe changes in the echo envelope as a result
of the channeling process when combined with more detailed
single atom probability distributions, as discussed in Ap-
pendix B. We expect that the model should also be applicable
to other coherent scattering experiments where the density of
an atomic sample is modulated through laser interaction [79].

For both the one-pulse grating AI and the grating-echo
AI, we report a total increase in sample reflectivity of ≈20
observed by combining the effects of a near-resonant readout
beam and optimizing optical channeling. This enhancement is
easily observed within a single dataset where the channeling
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and detuning parameters have been varied to maximize the
signal. It should be possible to realize similar improvements
in lattices loaded during the trapping phase of the experiment
as in Ref. [42]. We anticipate that these gains will increase
the signal-to-noise ratio of the echo AI at large observation
times T , paving the way for more sensitive measurements of
h̄/m and g. While we have not yet explored systematic errors
introduced by the use of long excitation pulses, we expect that
the improved sensitivity of the interferometer will allow these
effects to be explored thoroughly and enable a comparison
with previously demonstrated AI configurations.
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APPENDIX A: DERIVATION OF FAR OFF-RESONANT
BRAGG REFLECTION

Bragg scattering of a probe beam from a phased array of
localized dipoles [50], such as atoms in a lattice, results in the
emission of light into a solid angle d� that can be written as
[61,63]

dP

d�
= π2

λ4
RO

∣∣∣∣ α

ε0

∣∣∣∣
2

( fRN )2β2Iin (A1)

where P is the scattered power, Iin is the readout intensity, λRO

is the readout wavelength, N is the number of atoms, ε0 is the
permittivity of free space, β is the Debye-Waller factor, fR is
the fractional occupation number, and

α = 3ε0λ
3
RO

4π2

SF,F ′

i + 2�RO/	
(A2)

is the complex atomic polarizability. Here, �RO represents
the readout detuning relative to an excited state, where 	 is
the radiative rate and SF,F ′ is the oscillator strength of the
transition.

In the far field, where the scattering atoms can be viewed
as a point source, we can estimate the solid angle as � ≈
8λ2

RO/πD2, where D is the diameter of the scattered beam.
The resulting scattered power is given by

P = 8π
( fRN )2β2

λ2
ROD2

∣∣∣∣ α

ε0

∣∣∣∣
2

Iin. (A3)

Assuming that the scattered beam has an intensity

Iscatt = 4P

πD2
(A4)

we can write the reflected fraction of the readout field, given
by Eq. (1), as

R = Iscatt

Iin
= 18

π4

(
λRO

D

)4 S2
F,F ′

1 + (2�RO/	)2
( fRN )2β2. (A5)

FIG. 7. One-pulse grating AI reflection coefficient in comparison
with simulations of Eq. (6). Simulations use N = 11×108, fR = 0.56,
and γ = 0.0 mrad. The solid line indicates simulations with � = δz,z j

while the dashed line represents simulations using a Gaussian wave
packet with a width of h̄/σp.

APPENDIX B: REFLECTIVITY FOR ALTERNATE SINGLE
ATOM PROBABILITY DISTRIBUTION

As mentioned in Sec. III, the transfer matrix formalism
and sequential density model can be modified to incorporate
additional physical effects present in the interferometer. In
the main body of the paper we employ a delta function to
represent the single-atom probability distribution. Here, we
show two examples of how the sequential density model can
be applied to other single-atom probability distributions. The
first is a Gaussian distribution and the second is a distribution
with spatial modulation that arises from interaction with short
laser pulses in the Raman-Nath limit.

As described in the body of the paper, the atomic proba-
bility distribution � j = ψ∗ψ can be approximated by a delta
function even for relatively hot atomic samples. This sim-
plification can be avoided by using a Gaussian wave packet
with a spatial width of h̄/σp. Here, σp = √

2mkBT is the
momentum-space width of an atomic probability distribution
with temperature T , and kB is Boltzmann’s constant. Exam-
ples of the spectra including this Gaussian distribution and
the delta function approximation are shown with accompany-
ing experimental data in Fig. 7, where we see no significant
difference arising from the relatively narrow spread of wave
packets for 10-µK samples.

In addition, the transfer matrix approach can also be used
to describe the time dependent envelope of the scattered field
signal in the grating-echo AI in the channeling regime, where
an analytical description is not available.

In previous work [36,41,53,59], the signal shape in the
Raman-Nath regime has been estimated by calculating the
atomic density (� = ψ∗ψ), integrating over the velocity dis-
tribution, and evaluating the λ/2 Fourier component. The
solid lines in the lower panels of Fig. 1 show the signal shapes
resulting from this type of calculation for pulses that satisfy
the Raman-Nath criterion. However, by altering the atomic
probability distribution � in Eq. (8) to include momentum
state interference, and then inserting this new distribution into
the transfer matrix formalism, we can predict the signal shape
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both in the Raman-Nath regime and for the channeling regime
in which excitation pulses violate the Raman-Nath criterion.

As an example, we can use the modulated position-space
wave function following the application of two SW pulses
separated by a time T , that was derived in the absence of
spontaneous emission and atomic motion [71] as

ψ2(z, t ) =
(

σp√
π h̄F (t )

)1/2

e
−(zh̄)2

2σ2
p F (t )

×
∑
n,n′

AnBn′ei(nφ1+n′φ2 )e
−i

F (T ) p2
nT/2mh̄

× e
−1

F (t )F (T ) P2
n,n′ (t−T )/2mh̄e

i
F (t ) Pn,n′ z/h̄. (B1)

Here φ1 is the phase of the first SW excitation and F (t ) =
1 + iωDt describes the spreading of the wave function due
to the Doppler angular frequency width ωD = 2kBT /h̄. The
coefficients An = (−i)nJn(u1) correspond to nth order Bessel
functions (Jn) arising from a Jacobi-Anger expansion for
a first pulse area u1 = �2

0τ1/2�. Bn′ = (−i)n′
Jn′ (u2), where

u2 = �2
0τ2/2� is the second pulse area, φ2 is the phase of the

second pulse, pn = p0 + nh̄q is the momentum state excited
by the first SW pulse, and Pn,n′ = p0 + (n + n′F (T ))h̄q is the
total momentum excited by the two pulses. In this case, q =
2k is the lattice wave vector and p0 is the mean momentum of
the sample.

Figure 8 shows the results of using the wave functions from
Eq. (B1) in the sequential density simulations described in
the main body of this paper. Here we take � = ψ∗

2 ψ2, and
insert it into a calculation of the atomic density distribution
[Eq. (8)] in order to calculate the reflectivity in the vicinity
of t = 2T . The resulting calculations based on Eq. (6) are
overlaid with experimental data showing the echo envelope.
Here the envelope data were obtained by varying the onset of
the readout pulse relative to the echo time (t = 2T ).

These simulations were performed by using Monte Carlo
methods and by limiting the population of the atomic lattice to
N = 1000 atoms, as the computational costs of using a more
realistic N were prohibitive. Accordingly, the absolute value
of the reflectivity was scaled by an arbitrary constant to match
the data.

Despite this rescaling, we note the good agreement be-
tween simulation and data, demonstrating the transition of the
echo envelope from a two-lobed feature in the Raman-Nath
regime (τ ≈ 0.17 τHO) to a single-lobed feature in the chan-
neling regime (τ ≈ 1.07 τHO). This change in signal shape has
been remarked upon in Ref. [42] but does not appear to have
been studied further.

We can explain this result using the billiard ball model
presented in Fig. 1, where the signal maxima will occur

FIG. 8. Signal envelopes of the grating-echo AI as a result of
different channeling times as indicated by the legend. Points indicate
experimental data while solid lines show simulations of the sample
reflectivity predicted by Eq. (6) with a probability distribution of
a single atom defined by (B1) which represents the matter-wave
interference created by the excitation pulses.

when diffracting wave packets partially overlap within their
de Broglie wavelengths [78], both immediately after the first
pulse or near the echo time. In the Raman-Nath limit, one
can consider the excitation pulses to be imposing a phase
grating on the atomic sample which must then evolve into a
population density grating before it is probed using coher-
ent scattering of the RO pulse. It is for this reason that the
one-pulse density grating takes some time to evolve after the
application of the first SW pulse [41] in the Raman-Nath
regime, as shown in Fig. 1. In the echo AI, the second ex-
citation pulse reestablishes the density modulation that was
present at t = 0 at the echo time t = 2T . Accordingly, in the
Raman-Nath regime, the sample will be returned to an initially
unmodulated state at t = 2T , resulting in a zero in the reflec-
tivity. However, if the sample is optically channeled, then the
second pulse will recreate the channeled density grating at
the echo time rather than simply in its vicinity, resulting in
a signal maxima at t = 2T , as shown in Fig. 8.

We expect that improvements in the Monte Carlo sim-
ulation should eliminate the need for rescaling. Likewise,
alterations to the modulated atomic wave function to include
the effects of spontaneous emission [53] and atomic motion
during the excitation pulses should lead to even better agree-
ment with experimental results. The sequential density model
is sufficiently flexible to accommodate such changes, and this
aspect can lead to an interesting avenue for future exploration.
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